China best Hi Hdj HK Hl Hm Hn Ho Hq Agricultural Variable Speed V Belt for Combine Harvester axle examples

Product Description

Company Profile
HEIYI-A famous brand manufacture of a full series of variable speed v belt,cogged v belt,engine belts,fan belt.
When you are finding supplier,what do you care most?Must be quality and price!
How to know product quality about HEIYI?Let’s know about quality management about HEIYI.How does HEIYI process their quality control system?
We strictly produce according to ISO16949 QC system.
1.From the original material enter the factory&Finish products exit the factory,we have strictly control.(We take manufacture transfer card between each link).
2.We have Traceablity code for each belt,currently only HEIYI do this measurement among v belts market.
3.For each belt,we also have a print code on each belt,include date,batch no.We could find this batch no of belts from this code when find quality questions.To avoid large loss.This is a very effictive control method.

 

Our Factory

 

Main Product
1.Ribbed belt: PK,PJ,PL.
2.Raw-edge v belt: AV10X,AV13X,AV15X,AV17X,AV22X
3.Narrow cogged belt: XPZ,XPA,XPB,XPC,SPBX,SPCX,SPZX
4.Variable speed belt: HI25mm,HD32mm,HDJ32mm,HJ32mm,HK,HL,HM,HN,HO,HQ.
5.Joined banded cogged v belt.Such as 2HB,3HB,4HB,2SB,3SB,4SB,2SC,3S,9J-5,-6-7 ext.
6.Double side tooth belt: AA,BB,CC,HCC.
 

Product name:Rubber v belt
HS code:457139 to 200000km.
For agriculture and industrial v belt,according to differnt power loading,we have different class.

Standard or Nonstandard: Standard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car
Feature: Flame-Retardant, Anti-Static, Oil-Resistant, Cold-Resistant, Corrosion-Resistant, Heat-Resistant, Wear-Resistant, Acid-Resistant, High Temperature-Resistance
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

v belt

Can V-belts be used in environments with high temperatures or humidity?

V-belts can be used in environments with high temperatures or humidity, but it is important to consider the specific conditions and choose the appropriate belt material and design to ensure reliable and long-lasting performance. Here are some considerations regarding the use of V-belts in such environments:

  1. Temperature Resistance:
  2. V-belts are available in different materials that offer varying levels of temperature resistance. Standard V-belts made from materials like rubber or neoprene can typically withstand temperatures within a range of -30°C to 80°C (-22°F to 176°F). However, for applications with higher temperatures, specialized high-temperature belts made from materials like silicone or EPDM (ethylene propylene diene monomer) can be used, which can withstand temperatures up to 150°C (302°F) or even higher.

  3. Heat Dissipation:
  4. In high-temperature environments, heat dissipation becomes crucial to prevent belt degradation. Adequate ventilation and cooling measures should be in place to dissipate heat generated during belt operation. This can help maintain the integrity of the belt material and prevent premature wear or failure.

  5. Humidity and Moisture:
  6. V-belts can generally tolerate moderate levels of humidity and moisture. However, in environments with high humidity or exposure to water, it is important to select belts with moisture-resistant properties. Some V-belts come with special coatings or treatments that enhance their resistance to moisture, preventing swelling, deterioration, or loss of strength.

  7. Chemical Resistance:
  8. In certain high-temperature or high-humidity environments, there might be exposure to chemicals or contaminants. It is crucial to choose V-belt materials that are resistant to the specific chemicals present in the environment. Chemical-resistant belts, such as those made from materials like polyurethane or fluorocarbon elastomers, can withstand the effects of chemicals and maintain their performance.

  9. Regular Inspections and Maintenance:
  10. In any environment, but especially in high-temperature or high-humidity conditions, regular inspections and maintenance are essential. Periodic checks for signs of wear, cracking, glazing, or other forms of belt deterioration should be conducted. Prompt replacement of worn-out or damaged belts will help prevent unexpected failures and minimize downtime.

By considering these factors and selecting V-belts specifically designed for high-temperature or high-humidity environments, you can ensure proper performance, longevity, and reliability in such operating conditions.

v belt

What are the key differences between V-belts and other types of power transmission belts?

V-belts are a popular type of power transmission belts, but they differ from other types of belts in terms of design, construction, and specific applications. Here are the key differences:

1. Belt Profile:

V-belts have a trapezoidal or V-shaped cross-sectional profile, which gives them their name. This profile allows the belts to fit securely into V-shaped pulleys, providing effective power transmission and grip. Other types of belts, such as flat belts or timing belts, have different profiles suited for specific applications.

2. Power Transmission Method:

V-belts transmit power through frictional forces between the belt and the pulleys. As the belt wraps around the pulleys, the friction between the belt and the pulley surfaces allows the transfer of torque and power. In contrast, other belts, like timing belts or chain drives, use toothed profiles or interlocking mechanisms to transmit power, providing precise synchronization and higher torque transmission.

3. Load Capacity:

V-belts are designed to handle moderate to high loads, making them suitable for a wide range of applications. However, certain applications with heavier loads may require specialized heavy-duty V-belts or alternative belt types, such as synchronous belts or chain drives, which offer higher load-carrying capacities.

4. Speed Range:

V-belts are suitable for a broad speed range, but their limitations may vary depending on the specific design, material, and construction. Traditional V-belts may have speed limitations at extremely high speeds due to centrifugal forces and heat generation. High-speed V-belts or narrow V-belts are available for applications that require higher speeds. In contrast, timing belts and synchronous belts are designed for precise speed control and are commonly used in applications with strict speed requirements.

5. Tensioning and Maintenance:

V-belts require periodic tensioning to maintain proper grip and power transmission efficiency. Tensioning is typically achieved through manual adjustment or automatic tensioners. Other types of belts, such as timing belts or chain drives, often have fixed tensioning systems and require less frequent maintenance.

6. Noise and Vibration:

V-belts generally operate with lower noise and vibration levels compared to other types of belts, such as chain drives. The design and frictional nature of V-belts contribute to smoother operation and reduced noise generation, making them suitable for applications where noise and vibration control is important.

7. Applications:

V-belts are widely used in various applications, including industrial machinery, automotive systems, HVAC systems, and power transmission in general. They are versatile and can accommodate different power requirements. Other belt types, such as timing belts, are commonly used in precision positioning, robotics, or applications that require synchronous motion.

Overall, V-belts offer reliable and cost-effective power transmission for a wide range of applications. However, the selection of the appropriate belt type depends on factors such as load requirements, speed range, precision, noise considerations, and specific application needs.

v belt

How do you measure and select the right size of V-belt for a specific application?

When selecting the right size of V-belt for a specific application, it is important to consider factors such as the pulley diameters, center distance between the pulleys, power requirements, and the desired operating speed. Here is a step-by-step guide on how to measure and select the appropriate V-belt size:

  1. Identify the pulley diameters: Measure the diameter of both the driving and driven pulleys. Make sure to measure the diameter at the highest point of the pulley groove where the belt rides.
  2. Determine the center distance: Measure the distance between the center points of the driving and driven pulleys. This is the center distance and it plays a crucial role in determining the appropriate V-belt length.
  3. Calculate the pitch diameter: The pitch diameter is the effective diameter where the belt contacts the pulley. It can be calculated using the following formula: Pitch Diameter = (Driving Pulley Diameter + Driven Pulley Diameter) / 2.
  4. Consider the power requirements: Determine the amount of power that needs to be transmitted by the V-belt. This can be in the form of horsepower (HP) or kilowatts (kW). Refer to the manufacturer’s guidelines or engineering specifications to ensure the selected V-belt can handle the required power.
  5. Choose the appropriate V-belt type: Based on the calculated pitch diameter, center distance, and power requirements, select the type of V-belt that is suitable for the specific application. Consider factors such as load capacity, speed capability, and environmental conditions.
  6. Refer to V-belt manufacturer’s catalogs: Consult the manufacturer’s catalogs or online resources to find the available V-belt sizes and corresponding part numbers. Cross-reference the calculated parameters with the provided charts or tables to identify the appropriate V-belt size.
  7. Verify the selection: Double-check the selected V-belt size against the calculated parameters to ensure accuracy. If possible, consult with a technical expert or the manufacturer’s support team to validate the selection.

It is important to note that V-belt sizes are standardized and typically follow specific designations, such as the Classical V-belt designation (e.g., A, B, C, D) or the metric designation (e.g., SPZ, SPA, SPB, SPC). These designations indicate different belt widths and lengths.

In summary, measuring and selecting the right size of V-belt for a specific application involves identifying the pulley diameters, determining the center distance, calculating the pitch diameter, considering the power requirements, choosing the appropriate V-belt type, referring to manufacturer’s catalogs, and verifying the selection. Following these steps will help ensure the proper functioning and longevity of the V-belt in the intended application.

China best Hi Hdj HK Hl Hm Hn Ho Hq Agricultural Variable Speed V Belt for Combine Harvester   axle examplesChina best Hi Hdj HK Hl Hm Hn Ho Hq Agricultural Variable Speed V Belt for Combine Harvester   axle examples
editor by CX 2023-11-16